Observation of fragile-to-strong dynamic crossover in protein hydration water.
نویسندگان
چکیده
At low temperatures, proteins exist in a glassy state, a state that has no conformational flexibility and shows no biological functions. In a hydrated protein, at temperatures greater-- similar 220 K, this flexibility is restored, and the protein is able to sample more conformational substates, thus becoming biologically functional. This "dynamical" transition of protein is believed to be triggered by its strong coupling with the hydration water, which also shows a similar dynamic transition. Here we demonstrate experimentally that this sudden switch in dynamic behavior of the hydration water on lysozyme occurs precisely at 220 K and can be described as a fragile-to-strong dynamic crossover. At the fragile-to-strong dynamic crossover, the structure of hydration water makes a transition from predominantly high-density (more fluid state) to low-density (less fluid state) forms derived from the existence of the second critical point at an elevated pressure.
منابع مشابه
Some thermodynamical aspects of protein hydration water.
We study by means of nuclear magnetic resonance the self-diffusion of protein hydration water at different hydration levels across a large temperature range that includes the deeply supercooled regime. Starting with a single hydration shell (h = 0.3), we consider different hydrations up to h = 0.65. Our experimental evidence indicates that two phenomena play a significant role in the dynamics o...
متن کاملExperimental evidence of fragile-to-strong dynamic crossover in DNA hydration water.
We used high-resolution quasielastic neutron scattering spectroscopy to study the single-particle dynamics of water molecules on the surface of hydrated DNA samples. Both H(2)O and D(2)O hydrated samples were measured. The contribution of scattering from DNA is subtracted out by taking the difference of the signals between the two samples. The measurement was made at a series of temperatures fr...
متن کاملHydration-dependent dynamic crossover phenomenon in protein hydration water.
The characteristic relaxation time τ of protein hydration water exhibits a strong hydration level h dependence. The dynamic crossover is observed when h is higher than the monolayer hydration level hc=0.2-0.25 and becomes more visible as h increases. When h is lower than hc, τ only exhibits Arrhenius behavior in the measured temperature range. The activation energy of the Arrhenius behavior is ...
متن کاملRole of the solvent in the dynamical transitions of proteins: the case of the lysozyme-water system.
We study the dynamics of hydration water in the protein lysozyme in the temperature range 180 K<T<360 K using Fourier-transform-infrared and nuclear magnetic resonance (NMR) spectroscopies. By analyzing the thermal evolution of spectra of the OH-stretching vibration modes and the NMR self-diffusion (DS) and spin-lattice relaxation time (T1), we demonstrate the existence of two dynamical transit...
متن کاملThe influence of water on protein properties.
The "dynamic" or "glass" transition in biomolecules is as important to their functioning as the folding process. This transition occurs in the low temperature regime and has been related to the onset of biochemical activity that is dependent on the hydration level. This protein transition is believed to be triggered by the strong hydrogen bond coupling in the hydration water. We study the vibra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 24 شماره
صفحات -
تاریخ انتشار 2006